The Complex Link Between Animal and Human Urinary Tract Infections: A Deep Dive into *Escherichia coli*

Extraintestinal pathogenic Escherichia coli (ExPEC) is a significant cause of urinary tract infections (UTIs) in humans, accounting for 70-95% of cases. While these infections are often attributed to E. coli strains originating from food animals, the reality is far more complex. This article explores the intricate relationship between ExPEC in animals and humans, the challenges in tracing transmission routes, and the implications for public health.

Understanding ExPEC and its Pathogenesis

Escherichia coli is a diverse pathotype with strains capable of colonizing various ecological niches. ExPEC strains possess specific virulence factors that enable them to thrive in less hospitable environments like the urogenital tract. However, ExPEC is considered an opportunistic pathogen, requiring host-specific factors and vulnerabilities for disease to manifest. In humans, ExPEC can reside in the gastrointestinal tract and, under certain conditions such as a weakened immune system or specific risk factors, can transfer to the urogenital tract, leading to UTIs. The global burden of UTIs is substantial, with antibiotic resistance increasingly complicating treatment options.

The Foodborne UTI Hypothesis and its Challenges

The observation of similar virulence factor profiles between human and animal ExPEC strains has led to the concept of “foodborne UTIs” (FUTIs). However, similarities in bacterial traits do not automatically prove transmission, especially in a unidirectional manner from animals to humans. The genetic requirements for colonizing similar physiological compartments in different species can naturally lead to comparable virulence factors. Furthermore, the dynamic nature of E. coli populations within the human and animal gastrointestinal tracts, characterized by frequent strain turnover, makes pinpointing a specific source challenging. The extended timeframe between initial colonization and the onset of infection further complicates source attribution.

Complexities in Transmission Routes

While bacteria like E. coli can passively transfer to humans through various routes, including the food chain, definitively proving transmission is difficult. The global spread of highly virulent ExPEC clones, such as Sequence Type 131 (ST131), highlights the complexity of transmission pathways. These clones are often multidrug-resistant and their dissemination appears to have little direct link to animal agriculture origins, suggesting evolutionary pressures within human hospitals and communities. ExPEC has also been found in companion animals, with documented spread within households, indicating potential for human-to-animal and animal-to-human transmission. The possibility of horizontal gene transfer among E. coli strains further adds to the complexity.

Animal Antibiotic Use and Antibiotic Resistance

A significant concern is the role of antibiotic use in animal agriculture in driving antibiotic resistance in human UTI-causing E. coli. While studies show similar antimicrobial resistance (AR) traits in human and animal ExPEC, these findings alone do not establish a cause-and-effect relationship with agricultural antibiotic use. The presence of similar resistance profiles can arise from various factors, and attributing resistance solely to agricultural practices overlooks other potential sources and selection pressures. It’s also important to note that antibiotics used for growth promotion in animals often have limited activity against E. coli or are unrelated to the resistance patterns relevant for treating human UTIs.

The Environmental Reservoir and One Health Approach

The environment, particularly through sewage and wastewater, serves as a significant reservoir for ExPEC, including multidrug-resistant strains. This environmental dissemination can impact both human and animal populations, underscoring the need for an integrated, “One Health” approach. Addressing the burden of ExPEC-related illnesses requires robust study designs that account for the multitude of potential sources and transmission routes, moving beyond confirmation bias and subjective inference.

Conclusion: Towards Scientifically Sound Investigations

While the potential for ExPEC transfer from animals to humans through food exists, its frequency and significance remain largely undemonstrated. To effectively reduce the burden of ExPEC-related illnesses, the scientific community must prioritize ecologically-based, scientifically sound study designs. Integrating modeling efforts with empirical epidemiology and microbiology, and employing advanced molecular techniques like whole-genome sequencing, are crucial for unraveling the complex ecology of ExPEC and accurately attributing sources of infection.


References

  • Achtman, M., and Zhou, Z. (2014). Distinct genealogies for plasmids and chromosome. PLoS Genet. 10:e1004874.
  • Alam, M. F., Cohen, D., Butler, C., Dunstan, F., Roberts, Z., Hillier, S., et al. (2009). The additional costs of antibiotics and re-consultations for antibiotic-resistant Escherichia coli urinary tract infections managed in general practice. Int. J. Antimicrob. Agents 33, 255–257.
  • Amos, G. C., Hawkey, P. M., Gaze, W. H., and Wellington, E. M. (2014). Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment. J. Antimicrob. Chemother. 69, 1785–1791.
  • Anastasi, E. M., Matthews, B., Gundogdu, A., Vollmerhausen, T. L., Ramos, N. L., Stratton, H., et al. (2010). Prevalence and persistence of Escherichia coli strains with uropathogenic virulence characteristics in sewage treatment plants. Appl. Environ. Microbiol. 76, 5882–5886.
  • Anastasi, E. M., Matthews, B., Stratton, H. M., and Katouli, M. (2012). Pathogenic Escherichia coli found in sewage treatment plants and environmental waters. Appl. Environ. Microbiol. 78, 5536–5541.
  • Ashbolt, N. J., Amezquita, A., Backhaus, T., Borriello, P., Brandt, K. K., Collignon, P., et al. (2013). Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect. 121, 993–1001.
  • Belanger, L., Garenaux, A., Harel, J., Boulianne, M., Nadeau, E., and Dozois, C. M. (2011). Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol. Med. Microbiol. 62, 1–10.
  • Bergeron, C. R., Prussing, C., Boerlin, P., Daignault, D., Dutil, L., Reid-Smith, R. J., et al. (2012). Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerg. Infect. Dis. 18, 415–421.
  • Borrell-Carrio, F., and Epstein, R. M. (2004). Preventing errors in clinical practice: a call for self-awareness. Ann. Fam. Med. 2, 310–316.
  • Caugant, D. A., Levin, B. R., and Selander, R. K. (1981). Genetic diversity and temporal variation in the E. coli population of a human host. Genetics 98, 467–490.
  • Cooke, C. L., Singer, R. S., Jang, S. S., and Hirsh, D. C. (2002). Enrofloxacin resistance in Escherichia coli isolated from dogs with urinary tract infections. J. Am. Vet. Med. Assoc. 220, 190–192.
  • Cox, L. A. Jr., and Popken, D. A. (2008). Overcoming confirmation bias in causal attribution: a case study of antibiotic resistance risks. Risk Anal. 28, 1155–1172.
  • Danzeisen, J. L., Wannemuehler, Y., Nolan, L. K., and Johnson, T. J. (2013). Comparison of multilocus sequence analysis and virulence genotyping of Escherichia coli from live birds, retail poultry meat, and human extraintestinal infection. Avian Dis. 57, 104–108.
  • de Been, M., Lanza, V. F., De Toro, M., Scharringa, J., Dohmen, W., Du, Y., et al. (2014). Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 10:e1004776.
  • Ewers, C., Bethe, A., Semmler, T., Guenther, S., and Wieler, L. H. (2012). Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin. Microbiol. Infect. 18, 646–655.
  • Ewers, C., Grobbel, M., Stamm, I., Kopp, P. A., Diehl, I., Semmler, T., et al. (2010). Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-beta-lactamase-producing Escherichia coli among companion animals. J. Antimicrob. Chemother. 65, 651–660.
  • Ewers, C., Li, G., Wilking, H., Kiessling, S., Alt, K., Antao, E. M., et al. (2007). Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int. J. Med. Microbiol. 297, 163–176.
  • Foxman, B. (2002). Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am. J. Med. 113(Suppl. 1A), 5S–13S.
  • Foxman, B. (2014). Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. North Am. 28, 1–13.
  • George, D. B., and Manges, A. R. (2010). A systematic review of outbreak and non-outbreak studies of extraintestinal pathogenic Escherichia coli causing community-acquired infections. Epidemiol. Infect. 138, 1679–1690.
  • Hancock, V., Nielsen, E. M., Krag, L., Engberg, J., and Klemm, P. (2009). Comparative analysis of antibiotic resistance and phylogenetic group patterns in human and porcine urinary tract infectious Escherichia coli. APMIS 117, 786–790.
  • Hasan, B., Melhus, A., Sandegren, L., Alam, M., and Olsen, B. (2014). The gull (Chroicocephalus brunnicephalus) as an environmental bioindicator and reservoir for antibiotic resistance on the coastlines of the Bay of Bengal. Microb. Drug Resist. 20, 466–471.
  • Hinton, M. (1986). The ecology of Escherichia coli in animals including man with particular reference to drug resistance. Vet. Rec. 119, 420–426.
  • Hinton, M., Kaukas, A., Lim, S. K., and Linton, A. H. (1986). Preliminary observations on the influence of antibiotics on the ecology of Escherichia coli and the enterococci in the faecal flora of healthy young chickens. J. Antimic. Chemother. 18(Suppl. C), 165–173.
  • Hooton, T. M. (2012). Clinical practice. Uncomplicated urinary tract infection. N. Engl. J. Med. 366, 1028–1037.
  • Jakobsen, L., Garneau, P., Bruant, G., Harel, J., Olsen, S. S., Porsbo, L. J., et al. (2012). Is Escherichia coli urinary tract infection a zoonosis? Proof of direct link with production animals and meat. Eur. J. Clin. Microbiol. Infect. Dis. 31, 1121–1129.
  • Jakobsen, L., Hammerum, A. M., and Frimodt-Moller, N. (2010a). Detection of clonal group A Escherichia coli isolates from broiler chickens, broiler chicken meat, community-dwelling humans, and urinary tract infection (UTI) patients and their virulence in a mouse UTI model. Appl. Environ. Microbiol. 76, 8281–8284.
  • Jakobsen, L., Kurbasic, A., Skjot-Rasmussen, L., Ejrnaes, K., Porsbo, L. J., Pedersen, K., et al. (2010b). Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathog. Dis. 7, 537–547.
  • Jakobsen, L., Spangholm, D. J., Pedersen, K., Jensen, L. B., Emborg, H. D., Agerso, Y., et al. (2010c). Broiler chickens, broiler chicken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community-dwelling humans and UTI patients. Int. J. Food Microbiol. 142, 264–272.
  • Johnson, J. R., Kuskowski, M. A., Owens, K., Clabots, C., and Singer, R. S. (2009a). Virulence genotypes and phylogenetic background of fluoroquinolone-resistant and susceptible Escherichia coli urine isolates from dogs with urinary tract infection. Vet. Microbiol. 136, 108–114.
  • Johnson, J. R., McCabe, J. S., White, D. G., Johnston, B., Kuskowski, M. A., and McDermott, P. (2009b). Molecular analysis of Escherichia coli from retail meats (2002–2004) from the United States National Antimicrobial Resistance Monitoring System. Clin. Infect. Dis. 49, 195–201.
  • Johnson, J. R., Menard, M., Johnston, B., Kuskowski, M. A., Nichol, K., and Zhanel, G. G. (2009c). Epidemic clonal groups of Escherichia coli as a cause of antimicrobial-resistant urinary tract infections in Canada, 2002 to 2004. Antimicrob. Agents Chemother. 53, 2733–2739.
  • Johnson, J. R., Miller, S., Johnston, B., Clabots, C., and Debroy, C. (2009d). Sharing of Escherichia coli sequence type ST131 and other multidrug-resistant and urovirulent E. coli strains among dogs and cats within a household. J. Clin. Microbiol. 47, 3721–3725.
  • Johnson, J. R., Nicolas-Chanoine, M. H., Debroy, C., Castanheira, M., Robicsek, A., Hansen, G., et al. (2012a). Comparison of Escherichia coli ST131 pulsotypes, by epidemiologic traits, 1967–2009. Emerg. Infect. Dis. 18, 598–607.
  • Johnson, T. J., Logue, C. M., Johnson, J. R., Kuskowski, M. A., Sherwood, J. S., Barnes, H. J., et al. (2012b). Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry. Foodborne Pathog. Dis. 9, 37–46.
  • Johnson, J. R., Sannes, M. R., Croy, C., Johnston, B., Clabots, C., Kuskowski, M. A., et al. (2007a). Antimicrobial drug-resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002–2004. Emerg. Infect. Dis. 13, 838–846.
  • Johnson, T. J., Kariyawasam, S., Wannemuehler, Y., Mangiamele, P., Johnson, S. J., Doetkott, C., et al. (2007b). The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J. Bacteriol. 189, 3228–3236.
  • Johnson, T. J., and Nolan, L. K. (2009). Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol. Mol. Biol. Rev. 73, 750–774.
  • Johnson, T. J., Wannemuehler, Y., Doetkott, C., Johnson, S. J., Rosenberger, S. C., and Nolan, L. K. (2008a). Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. J. Clin. Microbiol. 46, 3987–3996.
  • Johnson, T. J., Wannemuehler, Y., Johnson, S. J., Stell, A. L., Doetkott, C., Johnson, J. R., et al. (2008b). Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl. Environ. Microbiol. 74, 7043–7050.
  • Kariyawasam, S., Scaccianoce, J. A., and Nolan, L. K. (2007). Common and specific genomic sequences of avian and human extraintestinal pathogenic Escherichia coli as determined by genomic subtractive hybridization. BMC Microbiol. 7:81.
  • Kluytmans, J. A., Overdevest, I. T., Willemsen, I., Kluytmans-Van Den Bergh, M. F., Van Der Zwaluw, K., Heck, M., et al. (2013). Extended-spectrum beta-lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin. Infect. Dis. 56, 478–487.
  • Lanza, V. F., De Toro, M., Garcillan-Barcia, M. P., Mora, A., Blanco, J., Coque, T. M., et al. (2014). Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences. PLoS Genet. 10:e1004766.
  • Logue, C. M., Doetkott, C., Mangiamele, P., Wannemuehler, Y. M., Johnson, T. J., Tivendale, K. A., et al. (2012). Genotypic and phenotypic traits that distinguish neonatal meningitis-associated Escherichia coli from fecal E. coli isolates of healthy human hosts. Appl. Environ. Microbiol. 78, 5824–5830.
  • Luo, C., Walk, S. T., Gordon, D. M., Feldgarden, M., Tiedje, J. M., and Konstantinidis, K. T. (2011). Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc. Natl. Acad. Sci. U.S.A. 108, 7200–7205.
  • Maluta, R. P., Logue, C. M., Casas, M. R., Meng, T., Guastalli, E. A., Rojas, T. C., et al. (2014). Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil. PLoS ONE 9:e105016.
  • Manges, A. R., and Johnson, J. R. (2012). Food-borne origins of Escherichia coli causing extraintestinal infections. Clin. Infect. Dis. 55, 712–719.
  • Manges, A. R., Johnson, J. R., Foxman, B., O’bryan, T. T., Fullerton, K. E., and Riley, L. W. (2001). Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N. Engl. J. Med. 345, 1007–1013.
  • Manges, A. R., Natarajan, P., Solberg, O. D., Dietrich, P. S., and Riley, L. W. (2006). The changing prevalence of drug-resistant Escherichia coli clonal groups in a community: evidence for community outbreaks of urinary tract infections. Epidemiol. Infect. 134, 425–431.
  • Manges, A. R., Smith, S. P., Lau, B. J., Nuval, C. J., Eisenberg, J. N., Dietrich, P. S., et al. (2007). Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: a case-control study. Foodborne Pathog. Dis. 4, 419–431.
  • Manges, A. R., Tabor, H., Tellis, P., Vincent, C., and Tellier, P. P. (2008). Endemic and epidemic lineages of Escherichia coli that cause urinary tract infections. Emerg. Infect. Dis. 14, 1575–1583.
  • Mather, A. E., Matthews, L., Mellor, D. J., Reeve, R., Denwood, M. J., Boerlin, P., et al. (2012). An ecological approach to assessing the epidemiology of antimicrobial resistance in animal and human populations. Proc. Biol. Sci. 279, 1630–1639.
  • Mather, A. E., Reid, S. W., Maskell, D. J., Parkhill, J., Fookes, M. C., Harris, S. R., et al. (2013). Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 341, 1514–1517.
  • Mora, A., Viso, S., Lopez, C., Alonso, M. P., Garcia-Garrote, F., Dabhi, G., et al. (2013). Poultry as reservoir for extraintestinal pathogenic Escherichia coli O45:K1:H7-B2-ST95 in humans. Vet. Microbiol. 167, 506–512.
  • Moreno, E., Andreu, A., Pigrau, C., Kuskowski, M. A., Johnson, J. R., and Prats, G. (2008). Relationship between Escherichia coli strains causing acute cystitis in women and the fecal E. coli population of the host. J. Clin. Microbiol. 46, 2529–2534.
  • Moulin-Schouleur, M., Reperant, M., Laurent, S., Bree, A., Mignon-Grasteau, S., Germon, P., et al. (2007). Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. J. Clin. Microbiol. 45, 3366–3376.
  • Moulin-Schouleur, M., Schouler, C., Tailliez, P., Kao, M. R., Bree, A., Germon, P., et al. (2006). Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. J. Clin. Microbiol. 44, 3484–3492.
  • Nicolas-Chanoine, M. H., Blanco, J., Leflon-Guibout, V., Demarty, R., Alonso, M. P., Canica, M. M., et al. (2008). Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 61, 273–281.
  • Nordstrom, L., Liu, C. M., and Price, L. B. (2013). Foodborne urinary tract infections: a new paradigm for antimicrobial-resistant foodborne illness. Front. Microbiol. 4:29.
  • Novais, A., Pires, J., Ferreira, H., Costa, L., Montenegro, C., Vuotto, C., et al. (2012). Characterization of globally spread Escherichia coli ST131 isolates (1991 to 2010). Antimicrob. Agents Chemother. 56, 3973–3976.
  • Olesen, B., Kolmos, H. J., Orskov, F., and Orskov, I. (1994). Cluster of multiresistant Escherichia coli O78:H10 in Greater Copenhagen. Scand. J. Infect. Dis. 26, 406–410.
  • Osugui, L., Pestana De Castro, A. F., Iovine, R., Irino, K., and Carvalho, V. M. (2014). Virulence genotypes, antibiotic resistance and the phylogenetic background of extraintestinal pathogenic Escherichia coli isolated from urinary tract infections of dogs and cats in Brazil. Vet. Microbiol. 171, 242–247.
  • Petty, N. K., Ben Zakour, N. L., Stanton-Cook, M., Skippington, E., Totsika, M., Forde, B. M., et al. (2014). Global dissemination of a multidrug resistant Escherichia coli clone. Proc. Natl. Acad. Sci. U.S.A. 111, 5694–5699.
  • Phillips, I., Eykyn, S., King, A., Gransden, W. R., Rowe, B., Frost, J. A., et al. (1988). Epidemic multiresistant Escherichia coli infection in West Lambeth Health District. Lancet 1, 1038–1041.
  • Pitout, J. D., Gregson, D. B., Church, D. L., Elsayed, S., and Laupland, K. B. (2005). Community-wide outbreaks of clonally related CTX-M-14 beta-lactamase-producing Escherichia coli strains in the Calgary health region. J. Clin. Microbiol. 43, 2844–2849.
  • Platell, J. L., Cobbold, R. N., Johnson, J. R., Heisig, A., Heisig, P., Clabots, C., et al. (2011a). Commonality among fluoroquinolone-resistant sequence type ST131 extraintestinal Escherichia coli isolates from humans and companion animals in Australia. Antimicrob. Agents Chemother. 55, 3782–3787.
  • Platell, J. L., Johnson, J. R., Cobbold, R. N., and Trott, D. J. (2011b). Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods. Vet. Microbiol. 153, 99–108.
  • Platell, J. L., Cobbold, R. N., Johnson, J. R., and Trott, D. J. (2010). Clonal group distribution of fluoroquinolone-resistant Escherichia coli among humans and companion animals in Australia. J. Antimicrob. Chemother. 65, 1936–1938.
  • President’s Council of Advisors on Science and Technology (PCAST). (2014). Report to the President on Combating Antibiotic Resistance. Executive Office of the President President’s Council of Advisors on Science and Technology.
  • Price, L. B., Johnson, J. R., Aziz, M., Clabots, C., Johnston, B., Tchesnokova, V., et al. (2013). The epidemic of extended-spectrum-beta-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. MBio 4, e00377–e00313.
  • Restif, O., Hayman, D. T., Pulliam, J. R., Plowright, R. K., George, D. B., Luis, A. D., et al. (2012). Model-guided fieldwork: practical guidelines for multidisciplinary research on wildlife ecological and epidemiological dynamics. Ecol. Lett. 15, 1083–1094.
  • Riley, L. W. (2014). Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 20, 380–390.
  • Riley, L. W., and Manges, A. R. (2005). Epidemiologic versus genetic relatedness to define an outbreak-associated uropathogenic Escherichia coli group. Clin. Infect. Dis. 41, 567–568.
  • Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J., Fakhr, M. K., and Nolan, L. K. (2005). Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology 151, 2097–2110.
  • Rothman, K. J., Greenland, S., and Lash, T. L. (2008). Modern Epidemiology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.
  • Sanchez, G. V., Master, R. N., Karlowsky, J. A., and Bordon, J. M. (2012). In vitro antimicrobial resistance of urinary Escherichia coli isolates among U.S. outpatients from 2000 to 2010. Antimicrob. Agents Chemother. 56, 2181–2183.
  • Singer, R. S., Cox, L. A., Dickson, J. S., Hurd, H. S., Phillips, I., and Miller, G. Y. (2007). Modeling the relationship between food animal health and human foodborne illness. Prev. Vet. Med. 79, 186–203.
  • Skjot-Rasmussen, L., Olsen, S. S., Jakobsen, L., Ejrnaes, K., Scheutz, F., Lundgren, B., et al. (2013). Escherichia coli clonal group A causing bacteraemia of urinary tract origin. Clin. Microbiol. Infect. 19, 656–661.
  • Smith, J. L., Fratamico, P. M., and Gunther, N. W. (2007). Extraintestinal pathogenic Escherichia coli. Foodborne Pathog. Dis. 4, 134–163.
  • Smith, S. P., Manges, A. R., and Riley, L. W. (2008). Temporal changes in the prevalence of community-acquired antimicrobial-resistant urinary tract infection affected by Escherichia coli clonal group composition. Clin. Infect. Dis. 46, 689–695.
  • Tausova, D., Dolejska, M., Cizek, A., Hanusova, L., Hrusakova, J., Svoboda, O., et al. (2012). Escherichia coli with extended-spectrum beta-lactamase and plasmid-mediated quinolone resistance genes in great cormorants and mallards in Central Europe. J. Antimicrob. Chemother. 67, 1103–1107.
  • Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H., et al. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33, 2233–2239.
  • Tivendale, K. A., Logue, C. M., Kariyawasam, S., Jordan, D., Hussein, A., Li, G., et al. (2010). Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect. Immun. 78, 3412–3419.
  • U.S. Food and Drug Administration, Center for Veterinary Medicine (2012a). Guidance for Industry #209: The Judicious Use of Medically Important Antimicrobial Drugs in Food-Producing Animals.
  • U.S. Food and Drug Administration, Center for Veterinary Medicine (2012b). NARMS Retail Meat Annual Report 2011.
  • U.S. Food and Drug Administration, Center for Veterinary Medicine (2013). Guidance for Industry #213: New Animal Drugs and New Animal Drug Combination Products Administered in or on Medicated Feed or Drinking Water of Food-Producing Animals: Recommendations for Drug Sponsors for Voluntarily Aligning Product Use Conditions with GFI #209.
  • van den Braak, N., Van Belkum, A., Kreft, D., Verbrugh, H., and Endtz, H. (2001). Dietary habits and gastrointestinal colonization by antibiotic resistant microorganisms. J. Antimicrob. Chemother. 47, 498–500.
  • Vincent, C., Boer

Leave a Reply

Your email address will not be published. Required fields are marked *